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We have used established relations between a probability density, expressed as a sum of 
positive integrable functions, to its characteristic function, which must consequently be 
given by a sum of functions of positive type, to study the asymptotic behaviour-in the 
limit k + 0-of the structure factors of liquids S(k) .  We have illustrated this new approach 
by choosing examples for which the asymptotic behavior of S ( k )  has been obtained using 
other methods. 

We also discuss the suitability of this novel technique to study the relationship between 
structure and the, implicitly assumed, forces in the Structural Diffusion model. 

1 INTRODUCTION 

Classical theories of liquids take for granted the existence of well 
defined potentials of intermolecular interaction, valid within some 
range of thermodynamic parameters, and consider as their major goal 
to provide workable functional relations between potentials and molec- 
ular correlations. Such an approach has been successfully pursued for a 
variety of simple ionic and non-ionic liquids for which the potentials 
may be thought of as reasonably well understood. 

Moreover, when the assumption of pairwise additivity of the affective 
interactions is justified, some precise information about the pair 
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122 S. BAER A N D  M. SILBERT 

potential may be obtained by examining the asymptotic behavior of 
pair correlations.’ The quantity directly accessible to measurement is 
the structure factor S(k) ,  and its asymptotic behavior is directly related 
to that of the radial distribution function g(r). Here asymptotic 
behavior means the functional form these functions adopt as the limits k 
(or r )  tending to either zero or infinity are taken. It is now generally 
accepted that these limits convey important information about the 
forces provided that only the assumed pair interaction determines its 
behavior. 

The most successful approach to study the asymptotic behaviour of 
S(k)  is due to Enderby er al.’ Their work assumes that the Ornstein- 
Zernike direct correlation function C(r)  tends asymptotically to the 
potential, viz. 

C(r)  2i -P+(r) as r + 00 ( 1 . 1 )  
with = ( k B T ) - ’ .  Replacing ( 1 . 1 )  in the Ornstein-Zernike equation, 
the method of asymptotic estimates of Fourier transforms3 leads to a 
number of fruitful relations for the small k-behavior of S(k)  and its 
 derivative^.^ Alternatively the same results follow by using the same 
method together with the asymptotic behavior of g(r) 

g(r) - 1 2 k,Tn2K,+(r) + o[+(r)]’ as r -+ cc ( 1-21 
where n is the number density and K ,  the isothermal compressibility of 
the liquid. 

The above results have been obtained by following well established 
procedures which make use of the explicit relationships between 
structure and forces characterizing the radial distribution theories of 
liquids. 

There is, however, another class of approximate theories of liquids 
which become very useful when the forces are not known. These may be 
broadly referred to as quasi-crystalline models, of which we shall be 
mainly concerned with the Structural Diffusion Model (SDM).6 In 
these models the forces are only implicitly accounted for by the local 
structure which they impose. This local structure is assumed to be a 
lattice in the broadest sense of the word and need not be restricted to a 
crystalline structure.’ Recent developments suggest that, using general- 
ized local lattices, the SDM may be useful in studying the structure of 
amorphous systems.’ 

The extended SDM indicates it is possible to represent S(k)  generally 
as a sum of positive terms, 

S ( k )  = C S v ( k ) ,  Sv(k)  2 0 for all v,  k (1.3) 
V 
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STRUCTURE AND FORCES IN LIQUIDS 123 

This form may be regarded as a generalization of the stability 
condition which for isotropic systems has the form’ 

S ( k )  2 0 for all k ( 1.4) 

The inequality follows from the definition 

n 

where nk is the kth-Fourier component of An(r) = n(r) - n where n(r) is 
the local number density and the angular brackets denote an ensemble 
average. 

Given (1.3), it is possible to exploit a theorem relating a probability 
distribution to its characteristic function.’ This enables us to obtain g(r)  
explicitly via a sum of functions, F,,(r), of positive type. 

Returning to the SDM, each term in (1.3) has an explicit form related 
to the local structure of the liquid. In addition, the asymptotic form of 
(1.3) can be obtained directly so as to give us information on the forces 
which are implied by the local structure. 

This work attempts to address some aspects of the problem of the 
structure-forces relations. By exploiting techniques hitherto not used in 
this context, we wish to draw attention to certain mathematical 
properties implied by (1.3). We believe that these could be advanta- 
geously used in the analysis of structural data and the construction of 
theoretical representations thereof. 

In Section 2 we present the basic definitions and results. In the first 
part of Section 3 we present a few illustrative examples using the 
techniques referred to above, which allow us to cross-check that we 
recover the known results on the asymptotic behaviour of S ( k )  obtained 
by using the more conventional analysis. In the second part of Section 3 
we discuss the relevance of this techique to provide further insights in 
the understanding of the asymptotic behaviour of S(k)  in the SDM. We 
complete the paper with a brief discussion of our results. 

2 THE STRUCTURE FACTOR REGARDED AS A SUM OF 
Dl STR I B UTl ONS 

2.1 Distributions and characteristic functions 

We introduce below some results from the theory of probability 
concerned with characteristic functions we shall need in this work. We 
refer the reader to Chapters 7 and 9 of Gnedenko’s book9 for a general 
presentation based on the notion of a probability distribution F(x). In 
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124 S. BAER AND M. SILBERT 

one dimension this is a nondecreasing function having the boundary 
value F( - co) = 0 and satisfying 

dF(x) = 1 (2.1) s 
Henceforth we adopt the more conventional custom used in physics 

of introducing a positive probability density p(x) via dF(x) = p(x) dx, 
defined for every x, with the understanding that at a point where F(x) 
experiences a finite jump, p(x) is proportional to a Dirac delta function, 
6(x). In addition we relax condition (2.1) and require only that p(x) is 
integrable, i.e. that its integral over the entire space is finite, 

p(x)dx < 00 s (2.1l) 

in which case p(x) can always be normalized to give the value one for 
the integral in (2.1’). 

The characteristic function of a probability distribution F(x) (or for a 
probability density p ( x ) )  is defined by 

f ( t )  = eifx dF(x) = e i fxp (x )  dx (2.3) s s  
This function has the following properties: 

i) is a continuous function of the real argument t ;  
ii) for any set of real numbers t l ,  ..., t ,  and complex numbers 

51, f f .  7 r ,  
n 

A function f(t), defined in the interval - co < t < 00, satisfying proper- 
ties (i) and (ii) is called’ a ‘positive semi-definite function’ or a ‘function 
of positive type’. These properties are satisfied by f ( t ) ,  as defined in 
(2.2), irrespective of the ‘normalization condition’ (2.1). 

2.2 Pair distributions in terms of characteristic functions 

The Fourier transform of S ( k )  is related to a pair correlation function 
F(r )  defined by 

(2.4) F(r)  = 6(r)  + nh(r) 

Here h(r)  = g ( r )  - 1 is the total correlation function, while the presence 
of Dirac’s &function indicates the inclusion of the self-correlation term. 
This is consistent with the Meyer-bond fugacity expansion of the total 
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STRUCTURE AND FORCES IN LIQUIDS 125 

correlation function, a representation which has been used to define 
pair and higher order correlation functions3 as well as pair and higher 
order structure factors." 

The structure factor is now given by 

S(k)  = F(r)eik" dr J 
and, conversely, 

4 n  

Since as stated in Section 1, S ( k )  is positive, it is tempting to view it as a 
probability density and hence have F(r) as a positive semi definite 
function. However S(k)  does not fulfil the requirement of integrability 
(2.17, for-given (2.5)-we have 

S(k)  dk = ( ~ X ) ~ F ( O )  s 
and by (2.4) this integral diverges. 

functions, viz. 
However if S ( k )  can be represented as a sum of positive integrable 

such that Sv(k)  > 0 and J Sv(k )  dk = finite, all the conditions for S(k) to 
be a probability density are satisfied. Whence F(r )  is a sum of positive 
semi definite functions 

with 
i r  

Fv(r )  = __ J S,(k)eik" dk 
(27C)' 

(2.9) 

Note that we must have always 

FV(0) > 0, IFv(r)l 5 Fv(r)  

and, since F(r )  contains a 6(r)  function, cy Fv(0)  diverges. 
There are two main reasons why we have chosen S(k)  to be a sum of 

distributions, as given by Eq. (2.7). The first is that we are now in a 
position to take full advantage of these properties of distribution laws 
outlined in the preceeding subsection. The second is that such a 
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126 S. BAER AND M. SILBERT 

representation is the most convenient to study the asymptotic behav- 
iour of S ( k )  in its relation to the SDM. Indeed, as we have indicated in 
the Introduction, our approach has been largely suggested and moti- 
vated by the latter. 

3 ASYMPTOTIC BEHAVIOUR OF S(k )  AND THE S D M  

3.1 Illustrative examples 

We present below three examples which illustrate the use of the 
approach discussed in the preceeding section. We must stress that the 
results we obtain are not asymptotic; for each assumed F, ( r )  there is a 
corresponding probability density S,(k).  Each term in the sum (2.7) 
satisfies the same distribution law. The advantage of considering the 
asymptotic behaviour of S(k) ,  namely that of taking the limit k -+ 00, is 
that comparison can be made with results obtained using different 
methods, and also-via those results-lo the relationship between the 
asymptotic behaviour of S ( k )  and the affective pair potential q5(r). 

Example I Assume 

F,(r)  = C,e-"-* 

Using (2.5) 

8711., S,(k)  = 
(A,' + k2)' (3.2) 

On taking the limit k + 0 it follows from Eq. (3.2) that S,(k)  may be 
written as an expansion in even powers of k ,  which has been referred to 
as the analytic expansion of S(k).4 Moreover this asymptotic behaviour 
of S ( k )  corresponds to the case when the potential @(I) + 0 as r + co 
faster than any power r-",  r~ > 3.4 

Example I1 Assume 

sin b,r 
F,(r) = C,e-"" ~ 

b,r 
and, using (2.5) 

8714 
S, (k )  = c, ____ 

[I-,' + ( b y  ,- k)z][A: + (b,  + k)'] 

(3.3) 

(3.4) 

This example differs from the first by the addition of the sin b,r/b,r 
term, and was investigated by Verlet' in the context of his molecular 
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STRUCTURE AND FORCES IN LIQUIDS 127 

dynamics studies of a Lennard-Jones fluid. However, on taking the 
limit k -+ 0, the asymptotic behaviour of S(k) may also be written as an 
expansion in even powers of k. This result, in agreement with other 
studies," shows that all that is required to obtain the correct small 
k-behaviour of S(k) are the asymptotes of the total correlation function 
of large r ;  the damped oscillations will contribute to the coefficients of 
the expansion but not its functional form. Whence the pair potential 
4 ( r )  giving rise to the asymptotic behaviour deduced from (3.4) must 
also asymptotically vanish, at large r,  faster than r-"(n > 3). 

Example ZZZ Here we assume 

,I:a 
= (2; + r2)a' * u > l  

a + 3  
2 Setting u zi __ , and integrating (2.5) by parts, we obtain 

(3.5) 

where T(u) is the Gamma function and K,(z)  the modified Bessel 
function of the second kind." 

The asymptotic limit, k + 0, deduced from Eq. (3.6), gives S(k)  - I kl". 
The same result arises whenever the assumed effective pair potential 
behaves like $(r)  - l/r3+", as r -+ 00, for any positive, odd integer or 
non-integer G . ~  

The extension of this example to one which also includes damped 
oscillations is straightforward. In the analysis of the asymptotic beha- 
viour of S(k) of the above examples two basic assumptions have been 
made. The first concerns S(k) itself. Strictly we have only looked at  the 
asymptotic behaviour of S,(k), a generic term in the sum given by Eq. 
(2.7). Here we are assuming that, since each term in the sum has the 
same functional form and that, hopefully, the terms in the sum belong 
to a rapidly converging sequence of positive integrable functions, the 
asymptotic behaviour pertaining to some generic Sv(k) is also that of 
S(k). The second assumption concerns the relationship between the 
asymptotic behaviour of S(k) and the effective pair potential which is 
likely to produce it. The implication here is that the asymptotic 
behaviour is solely determined by 4(r) .  This is a problem which goes 
beyond the specific technique used herein to derive the results shown in 
the three examples presented in this subsection; we shall return to this 
point in the concluding section of this work. 

P.C.L.--D 
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128 S. BAER AND M. SILBERT 

3.2 The structural diffusion model (SDM) 

In the SDM the local structure parameters which define the local lattice 
structure are viewed as random functions of space coordinates6 The 
correlation between a pair of such parameters, spatially separated, are 
given in terms of Fokker-Planck typer of equations leading to expres- 
sions for the total correlation function-via Eq. (2.8)-of the form 

where the b,'s (0 < b,  < b,, . . .) denote position vectors of points in the 
reciprocal lattice, while the width function W(r) is required to satisfy 
the conditions 

W(r) - Dr as r - +  co 

and (3.8) 
W(r)+O as r + O  

In the case of the SDM it may be assumed that the dominant term in 
Eq. (2.8)-insofar as we are concerned with the asymptotic, r + co, 
limit of F(r)-is given by 

(3.9) 

This result is the same as that discussed in Example 11. Hence the small 
k-behaviour of S(k)  will be also described, in this case, by an expansion 
in even powers of k.  There is, however, a problem when it comes to 
relate this behaviour to the effective pair potential in the fluid. As stated 
in Section I, within the SDM the forces are only implicitly accounted 
for by the local structure which they impose. In the low density limit 
this should lead to an asymptotic behaviour due solely by the forces, 
which is not necessarily that given in Eq. (3.9), a point which we are 
currently investigating. However at higher densities, say nearer to the 
melting point, the local lattice structure should contain information not 
only on the pair forces but also about collective effects in the liquid 
which, may in turn, modify the asymptotic behaviour of F(r). Hence it is 
conceivable that Eq. (3.9), as it stands, is the asymptotic behaviour of 
F(r )  which results from combining the effects of the effective pair 
potentials and cooperative effects as they are sustained in the liquid 
state. We return to this point in the next section. 

The asymptotic behaviour of F(r),  as r + 00, provides a useful insight 
of the class of functions we may choose for W(r) within the SDM, 
subject to (3.8). In fact, given that W(r) 'v 0 for some neighbourhood of 
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STRUCTURE AND FORCES IN LIQUIDS 129 

r = 0, say r < y o ,  inside the unit cell of the reciprocal lattice, the SDM 
formula (3.7) reproduces the 6(r)  part of F(r) ,  for 

F(r)  = n C  ~- - (3.10) 
v bv.r 

where the sum extends over all reciprocal lattice points. 
The construction of width functions W ( r ) ,  subject to Eq. (3.8) and 

satisfying Eq. (3.10), requires that they are such that preserve the 
positive type property of Fv(r).  Amongst the range of possible choices, 
one inspired by Eq. (3.7) is that e-"(') be of positive type for any 
positive A. There are necessary and sufficient conditions which W ( r )  has 
to satisfy for this to be so, and hence facilitate the choice of appropriate 
width functions. A further restriction may be imposed by requiring that, 
in the low density limit, the choice of W(r)  is compatible with the 
asymptotic r -, 0 (or k -, co) limit of F(r)  (S(k)) .  

4 DISCUSSION 

We have used an existing relationship between a probability density, 
and its characteristic function to discuss a few examples which repro- 
duce known results for the asymptotic behaviour of S(k) .  These 
examples illustrate, in our view, the usefulness of the approach pre- 
sented herein. The number of cases which could be studied is only 
limited to the ability of constructing the correct class of characteristic 
functions which also happen to have physical content. Moreover the 
theorems in probability theory which establish this relationship can be 
extended to the case of many variables. Hence it also appears to be a 
promising tool to study the asymptotic behaviour of higher-order 
structure factors on which, to our knowledge, very little work has been 
done.I3 

We have also been able, in the light of these results, to scrutinize the 
asymptotic behaviour of S ( k )  within the SDM. In our view it is an 
important step towards relating the structure to the, implicitly assumed, 
forces in this theory. However in this work we had to stop short of 
actually relating the asymptotic behaviour of S(k)  in the SDM to 
effective pair potentials. 

All the results relatifig to the asymptotic behaviour of S(k )  to forces 
are based on the assumption that it is solely determined by the assumed 
pair potential. However, even in systems where the validity of pairwise 
additivity of the potential could be sensibly assumed, the possibility of 
the presence of cooperative effects in the small k-regime of S ( k )  cannot 
be ruled out. Yet there are no a priori rules prescribing how to separate 
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130 S. BAER AND M. SILBERT 

out these effects. In a recent work, March and Senatore14 have 
empirically assumed that C(r),  as r + co, may be written as a sum due 
to the contribution of the ‘potential part’ and the ‘cooperative part’. 
While this remains an interesting avenue to explore, such an assump- 
tion needs independent corroboration. One possibility, which we are 
currently exploring, is to find out how the asymptotic behaviour of S ( k )  
changes as the low and high density limits in the fluid are considered. 
For a simple system the former should be solely determined by the 
potential, in the latter cooperative affects may play a role. Varying S ( k )  
as a function of density naturally leads to question the role played by 
the higher correlation functions and finding out whether their asymp- 
totic behaviour convey information on these effects. We believe that, 
within the approach presented here, such studies are possible. 

Only when we have made sufficient progress in understanding the 
role played by cooperative effects in shaping the asymptotic behaviour 
of S(k) ,  we shall be in a position to take tlle final step in relating forces 
to structure in the SDM. 
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